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Fast algebra algorithm of shape-from-shading with
specular reflectance
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Shape-from-shading (SFS) is to reconstruct three-dimensional (3D) shape from a single gray image, which
is an important problem in computer vision. We propose a novel SFS method based on hybrid reflection
model which contains both diffuse reflectance and specular reflectance. The intensity gradient of image is in
the direction that the shape of surface changes most, so we use directional derivative of the reflectance map
as parts of objective function. When discrete characteristic of digital images is considered, finite difference
approximates differential operator. So the reflectance map equation described by a partial differential
equation (PDE) turns into an algebra equation about the unknown surface height correspondingly. Using
iterative numeric computation, a new SFS method is gained. Experiments on synthesis and real images
show that the proposed SFS method is accurate and fast.

OCIS codes: 110.6150, 100.5010.

Shape-from-shading (SFS) is a classical problem in com-
puter vision, which reconstructs the three-dimensional
(3D) shape from one two-dimensional (2D) image[1−3].
The brightness of image points mainly depends on four
respects: the orientation of light source, the location
of camera, the orientation (shape) of object and the
reflectance property of its surface[4]. SFS is based on the
reflectance map equation at each imaged pixel. The de-
velopment of SFS mainly depends on two aspects, namely
the research of a better reflectance model and the in-
vestigation of an effective SFS algorithm. The classical
formulation of SFS is based on Lambertian reflectance
model together with the minimization of the total error
function using the calculus of variations[2,3]. Compre-
hensive survey of SFS can be found in Refs. [2,5]. Recent
reconstruction methods use advanced computation tools
such as neural networks[4,6,7], viscosity solution of partial
differential equation (PDE)[8], level set approach[9], and
so on. SFS has been widely applied in terrain analysis for
moon and ocean, medical imaging, industry automatic
inspection, etc.[1,10,11].

A fast SFS method based on hybrid reflection model
is proposed in this paper. We used the hybrid reflection
model because it is more prone to real reflectance than
Lambertian model or Torrance-Sparrow model[4]. We
mainly make progress in the objective function con-
taining gradient of image and effective reconstruction
method. The intensity gradient is in the direction that
the shape of surface changes most, so we decide to use di-
rectional derivative of image as parts of objective function
in our SFS. When discrete characteristic of digital images
is considered, finite difference approximates differential
operator. So the reflectance map equation described by
PDE turns into an algebra equation about the unknown
surface height. Using iterative numeric computation, a
new SFS method can be gained.

In SFS, we generally assume a point light source lo-
cated in infinite location. E denotes the light strength,
and its direction is �ni = (−p0,−q0, 1)T in image center
coordinate. The observing camera is located in direction
of �no = (0, 0, 1)T. The surface is z = z(x, y), and its

direction is �n (�n = (− ∂z
∂x ,− ∂z

∂y , 1)T). Orthogonal projec-
tion is used in the procedure of imaging. Two classes of
reflection models, namely, diffuse reflection and specu-
lar reflection, are usually considered. For most SFS algo-
rithms, the reflectance model is assumed to be a Lamber-
tian one[2]. The reflectance map function of the surface
illuminated by single point light source is given by

Rd(�n, �ni, �no) =
E

π|�n||�ni| × �nT · �ni. (1)

On the other hand, Torrance-Sparrow model using
a Gaussian distribution to model the facet orienta-
tion function is used to deal with specular reflectance
phenomena[4]. Another simple specular model is Phong’s
model[7] which indicates that the light perceived by the
camera is represented as

Rs(�n, �ni, �no) = E × (�nT · �nspec)K , (2)

where the vector �nspec = (�ni +�no)/ |�ni + �no| is called the
halfway-vector (or specular reflectance direction), and
K denotes a constant. Different values of K denote
different kinds of surfaces which are more or less mirror-
like.

But real surface reflectance is neither pure Lambertian
nor pure specular. Instead, they are a combination of
diffuse and specular components. Tagare et al. proposed
a hybrid model consisting of three components[12]. A
linear combination model of diffuse and specular compo-
nents described by Gaussian function was used by Cho[4].
We use the hybrid reflectance as[7]

R(p, q) = (1 − w)Rd(p, q) + wRs(p, q), (3)

where p(x, y) = −∂z(x,y)
∂x and q(x, y) = −∂z(x,y)

∂y de-
note the x- and y-partial derivatives of reconstructed
3D surface height z = z(x, y) with respect to the im-
age coordinates x and y, respectively, �nspec denoted
as (−ph,−qh, 1)T is specular reflectance direction, and
w ∈ [0, 1] is the factor of specular component. When
gray values of image and reflectance function are both
normalized, we get the well-known reflectance map equa-
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tion

(1 − w)
pp0 + qq0 + 1√

p2 + q2 + 1
√

p2
0 + q2

0 + 1

+w(
pph + qqh + 1√

p2 + q2 + 1
√

p2
h + q2

h + 1
)K =

I(x, y) − Imin

Imax − Imin
, (4)

where Imax and Imin are the acquired maximum and min-
imum intensities of image I(x, y).

We will solve Eq. (4) associating the image brightness.
The direction of intensity gradient is the direction in
which the shape of the surface changes most[13]. We no-
tice that the gradient of image describes the detail of
original surface, so directional derivative of the image
can be used to deal with SFS problem. The direction of
gradient is denoted by

Ix =
∂I

∂x
=

∂R

∂p

∂p

∂x
+

∂R

∂q

∂q

∂x
,

Iy =
∂I

∂y
=

∂R

∂p

∂p

∂y
+

∂R

∂q

∂q

∂y
. (5)

When index (i, j) in discrete domain approximates in-
dex (x, y) in continuous domain, the PDE Eq. (4) in con-
tinuous domain can be written as an algebra equation
as

R(pi,j , qi,j) = I(i, j). (6)

The objective function we used can be described as

R(pi,j, qi,j) + α(Rx(pi,j , qi,j) + Ry(pi,j , qi,j))

= I(i, j) + α(Ix(i, j) + Iy(i, j)), (7)

where I(i, j) is the digital image brightness, Ix(i, j)
and Iy(i, j) are the gradients of image along x- and y-
direction. Our experiments and analysis result show
that more error may be caused if gradients of image are
used directly, because they may introduce high-frequency
noise. On the other hand, gradient of image describes
the detail of image as we analyzed. So we use a positive
factor α (α ≥ 0) to balance this contradiction. Center
difference is used to approximate differential operator,
namely

p(x, y) ≈ pi,j =
zi+1,j − zi−1,j

2
,

q(x, y) ≈ qi,j =
zi,j+1 − zi,j−1

2
,

∂p

∂x
≈ pi+1,j − pi−1,j

2
=

zi+2,j − 2zi,j + zi−2,j

4
,

∂q

∂y
≈ qi,j+1 − qi,j−1

2
=

zi,j+2 − 2zi,j + zi,j−2

4
,

∂p

∂y
=

∂q

∂x
≈ pi,j+1 − pi,j−1

2

=
zi+1,j+1 − zi−1,j+1 − zi+1,j−1 + zi−1,j−1

4
,

Ix(i, j) =
I(i + 1, j) − I(i − 1, j)

2
,

Iy(i, j) =
I(i, j + 1) − I(i, j − 1)

2
. (8)

Subsitute Eq. (8) into Eq. (7), after rearranging we get

F (zi−2,j , zi−1,j, zi+1,j , zi+2,j , zi,j−2, zi,j−1, zi,j ,

zi,j+1, zi,j+2, zi−1,j−1, zi−1,j+1, zi+1,j−1, zi+1,j+1) = 0.

(9)

The form of F in Eq. (9) is as follows. For Lambertian
reflectance, differential of Rd(p, q) is

A =
∂Rd

∂p
=

1√
p2
0 + q2

0 + 1
(
p0(q2 + 1) − (q0q + 1)p√

(p2 + q2 + 1)3
),

(10a)

B =
∂Rd

∂q
=

1√
p2
0 + q2

0 + 1
(
q0(p2 + 1) − (p0p + 1)q√

(p2 + q2 + 1)3
).

(10b)

Rearranging Eq. (7) as

F = R(pi,j , qi,j) + α(Rx(pi,j , qi,j) + Ry(pi,j , qi,j))

−I(i, j) − α(Ix(i, j) + Iy(i, j)) = 0, (11)

using Eqs. (8), (10), and (11), then we have

F (zi−2,j , zi−1,j , zi+1,j, zi+2,j , zi,j , zi,j−2, zi,j−1,

zi,j+1, zi,j+2, zi−1,j−1, zi−1,j+1, zi+1,j−1, zi+1,j+1)

=
1√

p2
0 + q2

0 + 1

× (zi+1,j − zi−1,j)p0 + (zi,j+1 − zi,j−1)q0 + 2√
(zi+1,j − zi−1,j)2 + (zi,j+1 − zi,j−1)2 + 4

+α(
A

4
(zi+2,j − 2zi,j + zi−2,j)

+(
A + B

4
)(zi+1,j+1 − zi−1,j+1 − zi+1,j−1 + zi−1,j−1)

+
B

4
(zi,j+2 − 2zi,j + zi,j−2))

−I(i, j) − α(Ix(i, j) + Iy(i, j)) = 0. (12)

For hybrid reflectance, similar with Eq. (12) but slight
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difference as A, B is substituted by A′, B′, where

A′ =
∂R

∂p
= (1 − w)A

+wK × RK−1
s

1√
p2

h + q2
h + 1

(
ph(q2 + 1) − (qhq + 1)p√

(p2 + q2 + 1)3
),

(13a)

B′ =
∂R

∂q
= (1 − w)B

+wK × RK−1
s

1√
p2

h + q2
h + 1

(
qh(p2 + 1) − (php + 1)q√

(p2 + q2 + 1)3
).

(13b)

The following deduction is the same as that of Lamber-
tian reflectance. General iterative formulation is shown
as zi,j = zi,j + μ × F . By solving Eq. (12) using gen-
eral iterative algorithm, a new iterative SFS algorithm is
obtained as

z
(k+1)
i,j = z

(k)
i,j

+μ × F (z(k)
i−2,j , z

(k)
i−1,j , z

(k)
i+1,j, z

(k)
i+2,j , z

(k)
i,j−2, z

(k)
i,j−1, z

(k)
ij ,

z
(k)
i,j+1, z

(k)
i,j+2, z

(k)
i−1,j−1, z

(k)
i−1,j+1, z

(k)
i+1,j−1, z

(k)
i+1,j+1), (14)

where k = 1, 2, · · · denote the iterative times, and μ is it-
erative rate. The computation stops when iterative time
limitation is arrived or error criteria are satisfied.

We performed two experiments to evaluate the per-
formance of the proposed SFS method. One is to com-
pare the result of the proposed SFS method with existing
classical ones using synthesized image of hemisphere pro-
duced by hybrid reflectance model. The other is about a
real image of metal statuary of Xuesen Qian which witch
containing specular reflectance captured in Xi’an Jiao-
tong University using CANNON (CCD) camera. All the
algorithms are realized under the following conditions:
AMD 1.7-GHz CPU, 256 MB RAM, Windows 2000, and
Matlab7.0.

The reconstructed height of surface is denoted by zi,j ,
and z0

i,j is original height of surface. Main comparing
criteria of difference between them are mean error (ME)
and mean squared root error (MS) defined as

ME =
1

M × N

M∑
i=1

N∑
j=1

(zi,j − z0
i,j),

MS =

√√√√√
M∑
i=1

N∑
j=1

(zi,j − z0
i,j)2

M × N
, (15)

where M × N is the number of pixels of digital image.
Figure 1(a) shows the image of a synthesized

hemisphere[4]

z(x, y) =
{ √

402 − x2 − y2 if x2 + y2 ≤ 402

0 otherwise
(16)

Fig. 1. Reconstruction result of synthesized hemisphere. (a)
Shape (left) and image (right) of synthesized hemisphere;
(b)—(d) reconstructed shapes (left) and errors (right) using
the proposed method, Kimmel’s method, and Horn’s method.

Table 1. Comparing Result of Reconstructed Shape
of Synthesized Hemisphere

Proposed Method Kimmel’s[9] Horn’s[2]

ME of Height 0.9806 3.1341 −3.7891

MS of Height 1.4110 5.0887 5.4277

CPU Time (s) 82.2780 120.1200 306.3910

produced by hybrid reflectance. The light is located in
the direction (0, 0, 1)T. K and w in Eq. (3) are selected
as 10 and 0.3, respectively. The number of pixels of image
M × N is 100 × 100. We use camera center coordinates.
Reconstructed surface and errors with the original hemi-
sphere using proposed SFS method are shown as Fig.
1(b). Figures 1(c) and (d) are two reconstruction re-
sults using Kimmel’s method[9] and the classical method
proposed by Horn[2] for comparison. The numeric com-
paring results using the proposed method, Ron’s and
Horn’s method illuminated in Fig. 1 are listed in Table
1. In our algorithm, iterative rate μ is 0.1, the factor α
is 0.11, the iterative times is 200.

Figure 2(a) shows an image of metal statuary of Xuesen
Qian after nine-neighbor mean filtering. Figures 2(b),
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Fig. 2. Reconstruction results of real image of a metal statu-
ary. (a) Filtered image; (b)—(d) reconstruction results using
the proposed method, Kimmel’s method, and Horn’s method.

(c) and (d) are the reconstruction results using the pro-
posed method, Kimmel’s method and Horn’s method un-
der same iterative condition. In our algorithm, iterative
rate μ is 0.05, the factor α is 0.1. The iterative times
of three methods are 300, and K, w in Eq. (3) are se-
lected as 20 and 0.3, respectively. The number of pixels
of image is 70 × 80. The light source is the flash light of
the camera, so the direction of light is (0, 0, 1)T approxi-
mately.

Experiments indicate that the proposed SFS method
is an accurate and fast 3D shape reconstruction algo-
rithm. The synthesis experiment shows that the pro-
posed method is more accurate and faster than the
other two methods. The experiment on real image il-
luminated that SFS with real specular component is a
difficult work. In our method, the main error lies in big
reflectance angle. The error of reconstructed shape is
mainly located in specular reflectance because acquired
image should describe highlight correctly. But in real sit-
uation, ideal condition of image form is difficult to sat-
isfy. Two possible reasons are unideal point light source
and unsuitable reflectance model.

In conclusion, a novel discrete SFS method based on
hybrid reflection model is proposed. Hybrid reflectance
model is used because they are prone to reality. We use
directional derivative of image and reflectance map equa-
tion as objective function. When discrete characteristic

of digital images is considered, central-finite difference
approximates differential operator. The reflectance map
equation described by a PDE turns into an algebra equa-
tion about the unknown height. Using iterative numeric
computation, the unknown surface height is calculated.
Experiments on synthesis and real images show that the
proposed SFS method is accurate and fast. Further study
of SFS includes the more accurate reconstruction meth-
ods and their convergence and speed. Color SFS is also
an interesting investigation direction.
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